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Abstract We study conservation laws and potential symmetries of (systems of) differential
equations applying equivalence relations generated by point transformations between the
equations. A Fokker–Planck equation and the Burgers equation are considered as examples.
Using reducibility of them to the one-dimensional linear heat equation, we construct com-
plete hierarchies of local and potential conservation laws for them and describe, in some
sense, all their potential symmetries. Known results on the subject are interpreted in the pro-
posed framework. This paper is an extended comment on the paper of Mei and Zhang [Int.
J. Theor. Phys. 45: 2095–2102, 2006].

1 Introduction

A number of authors investigate symmetries (in particular, potential ones) and conservation
laws of different classes of equivalent equations. In such way they perform a huge number
of unnecessary cumbersome calculations. Since equivalence transformations may be quite
complicated, sometimes it seems to be impossible to obtain directly complete and correct
results for some cases which are equivalent to simple ones, although these results can be
easily reconstructed with application of equivalence transformations.

At the same time, it is a general mathematical rule that equivalent in some sense objects
possess certain equivalent properties. In particular, if two systems of equations are equiv-
alent with respect to point transformations then there exists a one-to-one correspondence
between their maximal Lie invariance algebras, spaces of conservation laws, potential sym-
metries, exact solutions etc. All the above mentioned features for more complicated models
can be constructed from ones of the simpler pointwise equivalent models by means of ap-
plication of known point equivalence transformation.
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In the presented paper we apply this observation to describe exhaustively local and po-
tential conservation laws and potential symmetries of a Fokker–Planck equation and the
famous Burgers equation due to reducibility of them to the linear heat equation.

This paper was started as a comment on the recent work [14], where the authors tried to
obtain some potential conservation laws of the Burgers and Fokker–Planck equations, refer-
ring to results of [19, 20]. At first our aim was to correct mathematically and historically
inaccurate statements of [14]. Thus, e.g., system (13) vx = u, vt = ux + xu is not a poten-
tial system for (12) ut = (xux)x + uxx of [14]. Comparing (12) and (13) with [19, 20] we
deduce that the authors consider conservation laws of the Fokker–Planck equation of form
ut = uxx + (xu)x . Let us mention also that the potential operator (14) given in [14] with a
reference to [19, 20] is written with misprints (up to the multiplier e2t ). Therefore, the con-
servation law obtained with this operator may be incorrect. Potential symmetry operators
for the Burgers equation obtained in [14] do not form linear space and, therefore, do not
form a Lie algebra. Direct calculations show also that (T 1, T 2) adduced in the last formula
of the paper [14] is not a conserved vector for the Burgers equation. While working on the
comment we decided to generalize essentially results of [14] adducing also the complete
sets of the potential conservation laws and giving a complete, in some sense, description of
all possible potential symmetries of the Burgers and Fokker–Planck equations.

To construct non-local conservation laws of the Fokker–Planck and Burgers equations
the following statement [9, 12] was used in [14] (see also [8, 13, 17]).

Proposition 1 If the system L admits a one-parameter group of symmetry transformations
with the infinitesimal generator Q = τ∂t + ξ∂x +η∂u and a conservation law of form DtT +
DxX = 0, then the vector-function (T̃ , X̃) with

T̃ = Q(T ) + T Dxξ − XDxτ, X̃ = Q(X) + XDtτ − T Dtξ

is a conserved vector.

If the conservation law is invariant with respect to the action of operator Q then (T̃ , X̃)

vanishes. Thus, one obtains a rule for finding conservation laws invariant with respect to
symmetry operator:

Q(T ) + T Dxξ − XDxτ = 0, Q(X) + XDtτ − T Dtξ = 0.

Although the latter formula (Theorem 3.1 from [14]) is completely true and can be useful
for obtaining particular classes of conservation laws, it is not guarantee that the resulting
conservation law will be non-trivial or pure nonlocal. Thus, e.g., if one redo the calculations
leading to formula (26) of [14] without computational inaccuracies, one obtains exactly
conservation law equivalent to local one. In general, invariant conservation laws do not
generate the complete space of conservation laws. Therefore, this approach is suitable only
in case the complete set of conservation laws is difficult or even impossible to be constructed.
As shown in [17], complete hierarchies of potential conservation laws for both equations
under consideration can be constructed.

Below we apply the equivalence framework to examine potential symmetries and conser-
vation laws of the Fokker–Planck and Burgers equations and to give a detailed interpretation
of interesting results of Pucci and Saccomandi [19, 20]. Since the both equations under con-
sideration are reduced to the linear heat equation, we also describe a way to find potential
symmetries of the linear heat equation using potential systems associated with nonconstant
characteristics.
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More precisely, our paper is organized as follows. At first, in Sect. 2 we adduce a nec-
essary theoretical background on conservation laws and potential systems, including a short
discussion of operating and rigorous definitions of conservation laws. Connections between
conservation laws and potential systems of differential equations which are equivalent with
respect to point transformations are also discussed in detail. Then, using reducibility of the
Fokker–Planck and Burgers equations to the one-dimensional linear heat equation, we con-
struct complete hierarchies of local and potential conservation laws for them and describe
their potential symmetries (Sects. 3 and 5). Potential symmetries of the linear heat equation
are considered in Sect. 4.

2 Theoretical Background

To begin with, we adduce a necessary theoretical background on conservation laws and
potential symmetries, following, e.g., [16, 17, 24] and considering for simplicity the case
of two independent variables t (the time variable) and x (the space variable). See the above
references for the general case.

Let L be a system L(t, x,u(ρ)) = 0 of l PDEs L1 = 0, . . . , Ll = 0 for the unknown
functions u = (u1, . . . , um) of the independent variables t and x. Here u(ρ) denotes the set
of all the partial derivatives of the functions u of order not greater than ρ, including u as the
derivatives of the zero order.

First we give an empiric definition of conservation laws.

Definition 1 A conservation law of the system L is a divergence expression

DtT (t, x,u(r)) + DxX(t, x,u(r)) = 0 (1)

which vanishes for all solutions of L. Here Dt and Dx are the operators of total differentia-
tion with respect to t and x, respectively. The differential functions T and X are correspond-
ingly called a density and a flux of the conservation law and the tuple (T ,X) is a conserved
vector of the conservation law.

The crucial notion of the theory of conservation laws is one of equivalence and triviality
of conservation laws.

Definition 2 Two conserved vectors (T ,X) and (T ′,X′) are equivalent if there exist func-
tions T̂ , X̂ and H of t , x and derivatives of u such that T̂ and X̂ vanish for all solutions
of L and T ′ = T + T̂ + DxH , X′ = X + X̂ − DtH . A conserved vector is called trivial if it
is equivalent to the zeroth vector.

The notion of linear dependence of conserved vectors is introduced in a similar way.
Namely, a set of conserved vectors is linearly dependent if a linear combination of them is
a trivial conserved vector.

It is obvious that under the problem of finding conservation laws for some system one
should understand the problem of finding inequivalent linearly independent conservation
laws, i.e., conservation laws having linearly independent conserved vectors.

Conservation laws can be investigated in the above empiric framework. However, for
deeper understanding of the problem and absolutely correct calculations a more rigorous
definition of conservation laws should be used.
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For any system L of differential equations the set CV(L) of conserved vectors of its
conservation laws is a linear space, and the subset CV0(L) of trivial conserved vectors is
a linear subspace in CV(L). The factor space CL(L) = CV(L)/CV0(L) coincides with the
set of equivalence classes of CV(L) with respect to the equivalence relation adduced in
Definition 2.

Definition 3 The elements of CL(L) are called conservation laws of the system L, and the
whole factor space CL(L) is called the space of conservation laws of L.

That is why description of the set of conservation laws can be assumed as finding CL(L)

that is equivalent to construction of either a basis if dim CL(L) < ∞ or a system of gener-
atrices in the infinite dimensional case. The elements of CV(L) which belong to the same
equivalence class giving a conservation law F are considered all as conserved vectors of
this conservation law, and we will additionally identify elements from CL(L) with their rep-
resentatives in CV(L). For (T ,X) ∈ CV(L) and F ∈ CL(L) the notation (T ,X) ∈ F will
denote that (T ,X) is a conserved vector corresponding to the conservation law F . In con-
trast to the order r(T ,X) of a conserved vector (T ,X) as the maximal order of derivatives
explicitly appearing in the differential functions T and X, the order of the conservation
law F is called min{r(T ,X) | (T ,X) ∈ F}. Under linear dependence of conservation laws we
understand linear dependence of them as elements of CL(L). Therefore, in the framework of
“representative” approach conservation laws of a system L are considered as linearly depen-
dent if there exists linear combination of their representatives, which is a trivial conserved
vector.

Let the system L be totally nondegenerate [16]. Then application of the Hadamard lemma
to the definition of conservation law and integrating by parts imply that the left hand side of
any conservation law of L can be always presented up to the equivalence relation as a linear
combination of left hand sides of independent equations from L with coefficients λμ being
functions of t , x and derivatives of u:

DtT + DxX = λ1L1 + · · · + λlLl. (2)

Definition 4 Formula (2) and the l-tuple λ = (λ1, . . . , λl) are called the characteristic form
and the characteristic of the conservation law DtT + DxX = 0 correspondingly.

The characteristic λ is trivial if it vanishes for all solutions of L. Since L is nondegener-
ate, the characteristics λ and λ̃ satisfy (2) for the same conserved vector (T ,X) and, there-
fore, are called equivalent iff λ− λ̃ is a trivial characteristic. Similarly to conserved vectors,
the set Ch(L) of characteristics corresponding to conservation laws of the system L is a lin-
ear space, and the subset Ch0(L) of trivial characteristics is a linear subspace in Ch(L). The
factor space Chf(L) = Ch(L)/Ch0(L) coincides with the set of equivalence classes of Ch(L)

with respect to the above characteristic equivalence relation.
Any conservation law (1) of L allows us to deduce the new dependent (potential) vari-

able v by means of the equations

vx = T , vt = −X. (3)

In the case of single equation L, equations of form (3) combine into the complete poten-
tial system since L is a differential consequence of (3). As a rule, systems of such kind admit
a number of nontrivial symmetries and so they are of a great interest. If the transformation
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of some of nonlocal variables t , x or u depends explicitly on variable v, such symmetry is
a nonlocal for the initial equation (system) and is called potential symmetry. Let us mention
that the concept of potential symmetry was introduced by Bluman et al. [5, 6] in the late
80-es. See also the related notion of quasilocal symmetry [1, 2].

An important property of the class of equations in the conserved form is that it is pre-
served under any point transformation (see, e.g., [17]).

Proposition 2 A point transformation g: t̃ = tg(t, x, u), x̃ = xg(t, x,u), ũ = ug(t, x,u)

prolonged to derivatives of u transforms the equation DtT + DxX = 0 to the equation
DtT

g + DxX
g = 0. The transformed conserved vector (T g,Xg) is determined by the for-

mula

T g(x̃, ũ(r)) = T (x,u(r))Dt t̃ + X(x,u(r))Dx t̃

Dt t̃Dxx̃ − Dxt̃Dt x̃
,

Xg(x̃, ũ(r)) = T (x,u(r))Dt x̃ + X(x,u(r))Dxx̃

Dt t̃Dxx̃ − Dxt̃Dt x̃
.

Note 1 In the case of one dependent variable (m = 1) g can be a contact transformation:
t̃ = tg(t, x, u(1)), x̃ = xg(t, x,u(1)), ũ(1) = u

g

(1)(t, x, u(1)). Similar notes are also true for the
below statements.

Proposition 3 Any point transformation g between systems L and L̃ induces a linear one-
to-one mapping g∗ from CV(L) into CV(L̃), which maps CV0(L) into CV0(L̃) and gener-
ates a linear one-to-one mapping gf from CL(L) into CL(L̃).

Corollary 1 Any point transformation g between systems L and L̃ induces a linear one-to-
one mapping ĝf from Chf(L) into Chf(L̃).

It is possible to obtain an explicit formula for correspondence between characteristics
of L and L̃. Let L̃μ = ΛμνLν , where Λμν = ΛμναDα , Λμνα are differential functions, α =
(αt , αx) runs the multi-indices set (αi ∈N ∪ {0}), μ,ν = 1, l. Then

λμ = Λνμ∗
((Dt t̃Dxx̃ − Dxt̃Dt x̃)λ̃ν).

Here Λνμ∗ = (−D)α · Λμνα is the adjoint to the operator Λνμ. For a number of cases, e.g.
if L and L̃ are single partial differential equations (l = 1), the operators Λμν are simply
differential functions (i.e., Λμνα = 0 for |α| > 0) and, therefore, Λνμ∗ = Λμν .

Equivalent conservation laws give rise to equivalent potential systems. More precisely,
Proposition 2 and (3) imply the following statement.

Proposition 4 Any point transformation connecting two systems L and L̃ of PDEs with two
independent variables generates a one-to-one mapping between the sets of potential systems,
which correspond to L and L̃. Generation is made via trivial prolongation on the space of
introduced potential variables, i.e., we can assume that the potentials are not transformed.

In such way, if a transformation connects two systems of differential equations, then
the same transformation maps the set of conservation laws of the first system to the set
of conservation laws of the second system and the space of characteristics of conservation
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laws to the space of characteristics. This transformation is trivially prolonged to the possible
potential variables and then makes a mapping between the corresponding sets of potential
systems. Therefore, one can easily derive characteristics of conservation laws, conservation
laws, potential systems and potential symmetries of the more complicated system from the
ones of the simpler system.

3 Fokker–Planck Equation

In [19, 20] Pucci and Saccomandi investigated potential symmetries of the Fokker–Planck
equation

ut = uxx + (xu)x. (4)

Using the simplest conservation law Dtu − Dx(ux + xu) = 0 with the characteristic 1, they
construct the corresponding potential system

vx = u, vt = ux + xu (5)

and then found its maximal Lie invariance algebra

g1 = 〈∂t , e−t ∂x, e−2t ∂t − e−2t x∂x + e−2t u∂u, et ∂x − et (xu + v)∂u − etxv∂v,

e2t ∂t + e2t x∂x − e2t (x2u + 2xv + 2u)∂u − e2t (x2 + 1)v∂v, u∂u + v∂v, fx∂u + f ∂v〉,

where the function f = f (t, x) runs the solution set of the equation ft = fxx + xfx . Any
operator from g1 is a potential symmetry operator of (4). It is a nontrivial potential symmetry
operator iff the coefficient of ∂u depends on v. Let us note that the algebra g1 of potential
symmetry operators differs from the maximal Lie invariance algebra

g0 = 〈∂t , e−t ∂x, e
−2t ∂t − e−2t x∂x + e−2t u∂u, et ∂x − etxu∂u,

e2t ∂t + e2t x∂x − e2t x2u∂u, u∂u, fx∂u + f ∂v〉

of (4) and is not projectible to g0. At the same time, the algebras g0 and g1 are isomorphic.
We interpret the results by Pucci and Saccomandi on the characteristic 1 in the above

framework of the equivalence relation between conservation laws of different equations,
which is extended to equivalence of potential systems. Then we give a generalization for the
case of arbitrary characteristic.

It is well-known that the Fokker–Planck equation (4) is reduced to the linear heat equation
ũt̃ = ũx̃x̃ by the transformation

T : t̃ = 1

2
e2t , x̃ = etx, ũ = e−t u.

The same transformation maps the conservation law of the Fokker–Planck equation with
characteristic 1 to the one of the linear heat equation with the same characteristic. In view
of Proposition 4, potential system (5) reduces to the potential system

ṽx̃ = ũ, ṽt̃ = ũx̃ (6)
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of the linear heat equation by the transformation T trivially prolonged to the potential vari-
able ṽ = v. Therefore, the prolonged transformation Tpr establishes an isomorphism between
the algebra g1 and maximal Lie invariance algebra

g̃1 = 〈∂t , ∂x,2t∂t + x∂x − u∂u,2t∂x − (xu + v)∂u − xv∂v,

4t2∂t + 4tx∂x − ((x2 + 6t)u + 2xv)∂u − (x2 + 2t)v∂v, u∂u + v∂v, hx∂u + h∂v〉,
of system (6) in a similar way as the simple transformation T do this between the algebra g0

and maximal Lie invariance algebra

g̃0 = 〈∂t , ∂x,2t∂t + x∂x,2t∂x − xu∂u,4t2∂t + 4tx∂x − (x2 + 2t)u∂u, u∂u,h∂u〉
of the linear heat equation. Here the function h = h(t, x) runs the solution set of this equa-
tion. Tildes over variables in the formulas for g̃0 and g̃1 are omitted.

As shown in [18], the algebra g̃1 also is isomorphic to the maximal Lie invariance alge-
bra of the potential equation ṽt̃ = ṽx̃x̃ (the form of which coincides with the initial equation
on u). Moreover, the Lie symmetry operators of the potential system (6) are the first pro-
longations of the Lie symmetry operators of the potential equation. It means that a similar
statement is true for all equivalent equations. Namely, the Lie symmetry operators of the
potential system (5) are the first prolongations of the Lie symmetry operators of the corre-
sponding potential equation vt = vxx +xvx that can be reduced to the “potential” linear heat
equation ṽt̃ = ṽx̃x̃ by means of the truncated transformation t̃ = 1

2 e2t , x̃ = etx, ṽ = v.
The set of all possible linearly independent local conservation laws of the linear heat

equation is well-known [7, 10, 11, 16, 17, 22] and consists of ones having the form

Dt̃(α̃ũ) + Dx̃(α̃x̃ ũ − α̃ũx̃ ) = 0,

where α̃ = α̃(t̃ , x̃) is an arbitrary solution of the backward linear heat equation α̃t̃ + α̃x̃x̃ = 0.
Using Proposition 2 or different versions of the direct method for finding conservation
laws [3, 4, 17, 23], we obtain the set of linearly independent local conservation laws of
the Fokker–Planck equation (4)

Dt(αu) + Dx((αx − xα)u − αux) = 0, (7)

where α = α(t, x) is an arbitrary solution of the linear equation αt + αxx − xαx = 0, which
is adjoint to the Fokker–Planck equation.

In [17] the theorem was proved that any potential conservation law of the linear heat
equation is equivalent to the local one. Therefore, in view of Proposition 2 the same is true
for the Fokker–Planck equation (4), and formula (7) gives the complete description of the
local and potential conservation laws of the Fokker–Planck equation (4).

Let us emphasize that the above statement on the potential conservation laws is true not
only for the laws obtained from the potential system corresponding to the characteristic
α = 1, but also for the system which is a union of any finite number of the potential systems
corresponding to linearly independent solutions of the backward heat equation.

4 On Potential Symmetries of Linear Heat Equation

In contrast to the conservation laws, potential symmetries of the linear heat equation are
investigated only in case of the single characteristics 1. The problem of construction of
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all possible potential symmetries of the linear heat equation remains open (in particular, it
includes investigation of systems with arbitrary families of linearly independent character-
istics).

Here we study the families of potential systems of the linear heat equation which are
constructed with single local conservation laws and make a preliminary investigation. As
mentioned in Sect. 3, any local conservation law of the linear heat equation ut = uxx has the
form

Dt(αu) + Dx(αxu − αux) = 0,

where α = α(t, x) is an arbitrary non-zero solution of the backward heat equation αt +αxx =
0. The characteristic of the conservation law coincides with α. The associated potential
system is

vx = αu, vt = αux − αxu. (8)

The initial equation on u is a differential consequence of system (8). Another differential
consequence is the equation

vt + 2
αx

α
vx − vxx = 0 (9)

on the potential dependent variable v which is called the potential equation associated with
the equation ut = uxx and the characteristic α.

Consider a Lie symmetry operator Q = τ∂t + ξ∂x + η∂u + θ∂v of system (8). The coef-
ficients of Q are functions of t , x, u and v. The infinitesimal invariance criterion [15, 16]
implies for system (8) that, in particular,

τu = ξu = θu = 0, (10)

τx = τv = ξv = θvv = 0, (11)

η =
(

θv − ξx − αt

α
τ − αx

α
ξ

)
u + θx

α
. (12)

The subsystem (10) of determining equations means that any Lie symmetry transforma-
tion of (8) with respect to t , x and v does not depend on u. Equation (9) is a differential
consequence of system (8), and there exist one-to-one correspondence between the sets of
solutions of (9) and system (8). Therefore, the truncated operator Q̂ = τ∂t + ξ∂x + θ∂v is a
Lie symmetry operator of (9).

And vice versa, consider a Lie symmetry operator Q̂ = τ∂t + ξ∂x + θ∂v of (9). The
coefficients of Q̂ are functions of t , x and v. Then the prolonged to u operator Q = Q̂+η∂u,
where η is defined by formula (12), is a Lie symmetry operator of system (8).

In view of the subsystem (11) of determining equations and the formula for η, we have
ηv = θxv . Hence the conservation law with the characteristic α results to pure potential sym-
metries of the linear heat equation iff the potential equation (9) possesses a Lie symmetry
operator with the coefficient θ of ∂v , which satisfy the condition θxv 	= 0.

Let us study the case of the simplest nonconstant characteristic α = x. The corresponding
potential equation has the form

vt + 2

x
vx − vxx = 0. (13)
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The maximal Lie invariance algebra of (13) is

t0 = 〈∂t ,2t∂t + x∂x,4t2∂t + 4tx∂x − (x2 − 2t)v∂v, v∂v, f ∂v〉,

where the function f = f (t, x) runs the solution set of (13). It is easy to see that for the third
basis operator the condition θxv 	= 0 is satisfied. Therefore, consideration with the charac-
teristic α = x leads to pure potential symmetries of the linear heat equation. Namely, the
system (8) with α = x possesses the maximal Lie invariance algebra

t1 = 〈∂t ,2t∂t + x∂x − 2u∂u,4t2∂t + 4tx∂x − ((x2 + 6t)u + 2v)∂u − (x2 − 2t)v∂v,

u∂u + v∂v, x
−1fx∂u + f ∂v〉,

where the function f = f (t, x) again runs the solution set of (13). Any linear combination
of operators from t1 which contains the third basis operator is an pure potential symmetry
operator of the linear heat equation. Note that the pure potential symmetry operators from
the algebra t1 differ from ones from the algebra g̃1 both the explicit form and the nature of
the potential variable which is defined by system (8) with α = x instead of system (6).

5 Burgers Equation

The famous Burgers equation

ut = uxx + 2uux (14)

is singular among nonlinear evolution equations due to its symmetry properties and admits
the five-dimensional maximal Lie invariance algebra [16]

b0 = 〈∂t , ∂x, t∂x − ∂u,2t∂t + x∂x − u∂u, t
2∂t + tx∂x − (tu + x)∂u〉.

It has one linearly independent local conservation law Dtu − Dx(ux + u2) = 0, the charac-
teristic of which equals to 1. The Lie symmetries of the potential system

vx = u, vt = ux + u2

associated with this conservation law are also well-known and studied by many authors. See,
e.g., [18, 21]. Its maximal Lie invariance algebra

b1 = 〈∂t , ∂x, ∂v,2t∂t + x∂x − u∂u,2t∂x − ∂u − 2x∂v,

4t2∂t + 4tx∂x − 2(x + 2tu)∂u − (x2 + 2t)∂v, e
−v(αx − αu)∂u − 4e−vα∂v〉,

is infinite-dimensional. Here α = α(t, x) is an arbitrary solution of the linear heat equation
αt = αxx . The elements of b1 are the first prolongations of Lie symmetry operators of the
potential Burgers equation vt = vxx + v2

x that is equivalent to the linear heat equation under
the transformation t̃ = t , x̃ = x, ṽ = ev . Since this transformation is not point in the variables
of the initial equation (ũ = uev), the structure of the space of potential conservation laws of
the Burgers equation is more complicated than in case of the linear heat equation. Namely,
the following theorem is proved in [17].
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Theorem 1 The complete hierarchy of the potential conservation laws of the Burgers equa-
tion consists of one local conservation law

Dtu − Dx(ux + u2) = 0

and infinite number of the linearly independent potential conservation laws have the form

Dt(βev) + Dx((βx − βu)ev) = 0

parameterized by the linearly independent solutions β = β(t, x) of the backward linear heat
equation βt = βxx .

The potential systems of the second level of the Burgers equation (i.e., potential systems
obtained with usage of potential conservation laws) are equivalent to potential systems of
the linear heat equation. That is why, investigation of the second-level potential symmetries
is reduced to investigation of potential symmetries of the linear heat equation.

6 Conclusion

In the presented paper we construct potential symmetries and complete hierarchies of po-
tential conservation laws of the Fokker–Planck and Burgers equations via reduction of them
to the linear heat equation. A brief discussion is given for the potential symmetries of the
linear heat equation obtained from the potential system associated with an arbitrary single
conservation law of the linear heat equation. The case of characteristics 1 and x are studied
exhaustively.

Let us emphasize that the problem on potential symmetries of the linear heat equation has
been solved only partially and is still open in the general statement. This problem includes
investigation of potential systems (8) with arbitrary characteristics and of union of such
systems with arbitrary families of linearly independent characteristics. In particular, it is
necessary to find such conditions for families of characteristics that the associated potential
system yields pure potential symmetries for the linear heat equation.

The next important and interesting generalization of the obtained results is to realize the
same program for arbitrary (1 + 1)-dimensional linear parabolic equations. We strongly be-
lieve that the method used in [17] for construction of all possible potential conservation laws
of the linear heat equation can be extended to this more general case. More precisely, it is
known that the space of characteristics of the local conservation laws of a linear partial dif-
ferential equation Lu = 0 includes the functions of independent variables being solutions of
the adjoint equation L∗λ = 0. Our conjecture is that any local or potential conservation law
of a (1+1)-dimensional linear parabolic equation is equivalent to one with the characteristic
depending only on the time and space variables. The conjecture was already tested for the
linear heat equation [17]. That is why, description of all possible potential symmetries of the
linear heat equation will give a good hint to solve the similar problem for arbitrary linear
parabolic (1 + 1)-dimensional equation. This will be the subject of our sequel paper.
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